Устьичная и кутикулярная транспирация
Снаружи листья имеют однослойный эпидермис, внешние стенки клеток которого покрыты кутикулой и воском, образующие эффективный барьер на пути движения воды. На поверхности листьев часто развиты волоски, которые также влияют на водный режим листа, так как снижают скорость движения воздуха над его поверхностью и рассеивают свет и тем самым уменьшают потери воды за счет транспирации.
Интенсивность кутикулярной транспирации варьирует у разных видов растений. У молодых листьев с тонкой кутикулой она может составлять около половины всей транспирации. У зрелых листьев с более мощной кутикулой кутикулярная транспирация равна 1/10 общей транспирации. В стареющих листьях из-за повреждения кутикулы она может возрастать. Таким образом, кутикулярная транспирация регулируется главным образом толщиной и целостностью кутикулы и других защитных покровных слоев на поверхности листьев.
Устьица представляют собой щель в подъустьичную полость, окаймленную двумя замыкающими клетками серповидной формы. Устьица играют важную роль в газообмене между листом и атмосферой, так как являются основным путем для водяного пара, углекислого газа и кислорода. Устьица находятся на обеих сторонах листа. Есть виды растений, у которых устьица располагаются только на нижней стороне листа. В среднем число устьиц колеблется от 50 до 500 на 1 мм². Транспирация через устьица идет почти с такой же скоростью, как и с поверхности чистой воды. Это объясняется законом И. Стефана: через малые отверстия скорость диффузии газов пропорциональна не площади отверстия, а диаметру или длине окружности. Поэтому, хотя площадь устьичных отверстий мала по отношению к площади всего листа (0,5-2 %), испарение воды через устьица идет очень интенсивно.
Транспирация слагается из двух процессов:
передвижения воды в листе из сосудов ксилемы по симпласту и, преимущественно, по клеточным стенкам, так как в стенках транспорт воды встречает меньшее сопротивление
испарения воды из клеточных стенок в межклетники и подъустьичные полости с последующей диффузией в окружающую атмосферу через устьичные щели.
Чем меньше относительная влажность атмосферного воздуха, тем ниже его водный потенциал. Если водный потенциал воздуха меньше водного потенциала подъустьичных полостей, то молекулы воды испаряются наружу.
Основным фактором, влияющим на открывание и закрывание устьиц, является содержание воды в листе, в том числе и в замыкающих клетках устьиц. Клеточные стенки замыкающих клеток имеют неодинаковую толщину. Внутренняя часть стенки, примыкающая к устьичной щели, более толстая, а внешняя — более тонкая. По мере того как замыкающая клетка осмотически поглощает воду, более тонкая и эластичная часть ее клеточной стенки растягивается и оттягивает внутреннюю часть стенки. Замыкающие клетки принимают полукруглую форму и устьица раскрываются. При недостатке воды замыкающие клетки выпрямляются и устьичная щель закрывается. Кроме того, по мере увеличения водного дефицита в тканях растения повышается концентрация ингибитора роста абсцизовой кислоты. Она подавляет деятельность Н+-насосов в плазмалемме замыкающих клеток, вследствие чего снижается их тургор и устьица закрываются. Абсцизовая кислота также ингибирует синтез фермента α-амилазы, что приводит к снижению гидролиза крахмала. По сравнению с низкомолекулярными углеводами крахмал не является осмотически активным веществом, поэтому сосущая сила замыкающих клеток уменьшается и устьица закрываются.
В отличие от других клеток эпидермиса замыкающие клетки устьиц содержат хлоропласты. Синтез углеводов в процессе фотосинтеза в замыкающих клетках увеличивает их сосущую силу и вызывает поглощение воды, способствуя этим открыванию устьиц.
Фотосинтез.
Фотосинтез — это процесс образования органических соединений из неорганических веществ с использованием энергии солнечного света. Его биологическое значение заключается в обеспечении живых организмов Земли органическими веществами, обогащении атмосферы Земли кислородом.
Процесс фотосинтеза протекает в хлоропластах, они имеют две мембраны. Внутренняя мембрана хлоропласта образует выпячивания -тилакоиды, которые складываются в стопки-граны. В мембрану гран встроены молекулы хлорофилла и ферментов, контролирующих реакции фотосинтеза.
Фотосинтез — это сложный многоступенчатый процесс. В нем различают световую и темновую фазы.
Световая фаза фотосинтеза начинается с освещения хлоропласта видимым светом. Фотон, попав в молекулу хлорофилла, приводит ее в возбужденное состояние: ее электроны перескакивают на высшие орбиты. Один из таких электронов переходит на молекулу-переносчика, она уносит его на другую сторону мембраны тилакоида. Молекулы хлорофилла восстанавливают потерю электрона, отбирая его от молекулы воды. В результате потери электронов молекулы воды разлагаются на протоны и ионы гидроксила (фотолиз).
Протоны, неспособные к диффузии через мембрану, накапливаются в гране. Ионы гидроксила ОН отдают свои электроны другим молекулам и превращаются в свободные радикалы ОН0, взаимодействующие друг с другом с образованием воды и молекулярного кислорода, который, диффундируя через мембрану, выделяется в атмосферу.
Таким образом, по одну сторону мембраны накапливаются положительно заряженные протоны, по другую — частицы с отрицательным зарядом, что приводит к нарастанию разности потенциалов. При достижении критического уровня разности потенциала протоны проталкиваются на другую сторону мембраны через канал внутри АТФ-синтетазы. Освобождающаяся при этом энергия тратится на синтез АТФ, которая переправляется в место синтеза углеводов.
Протоны, присоединив электрон, превращаются в атомы водорода, они также переправляются в место синтеза углеводов (Н+ + е —> Н0).
Общее уравнение световой фазы фотосинтеза:
Таким образом, в световую,фазу фотосинтеза протекают следующие процессы:
образование молекулярного кислорода, выделяющегося в атмосферу;
образование атомарного водорода.
Темновая фаза фотосинтеза состоит из ряда последовательных ферментативных реакций, в результате которых образуется глюкоза, служащая исходным материалом для биосинтеза других углеводов. Этот процесс идет с использованием энергии АТФ и при участии атомов водорода, образовавшегося в световую фазу.
Общее уравнение темновой фазы фотосинтеза:
6СО2 + 24 Н2О —> C6H12O6 + 6 H2O
Общее уравнение фотосинтеза:
6 С02 + 6 Н20 —> С6Н1206 + 6 02|
Кроме углеводов, в пластидах синтезируются аминокислоты, белки, липиды, хлорофилл.
Дата добавления: 2016-12-06 ; просмотров: 1279 | Нарушение авторских прав
Из стебля вода движется в листья через черешок иди листовое влагалище, а затем по жилкам. Количество проводящих элементов в каждой жилке последовательно уменьшатся по мере их ветвления. Самые мелкие жилки состоят из единичных трахеид. Система их распределения настолько эффективна, что редко клетки листа отделены от сосудистых элементов более чем двумя другими клетками. В листьях некоторых растений, особенно с С4-путем фотосинтеза, сосудистые пучки окружены одним слоем компактно расположенных паренхимных клеток, коюрые образуют обкладку пучка и одновременно выполняют функцию механической ткани. Обкладка тянется до самого окончания каждого сосудистого пучка. Снаружи листья имеют однослойный эпидермис, внешние стенки клеток которого покрыты кутикулой, а часто и восковым налетом. Эпидермис вместе с кутикулой образует эффективный барьер на пути движения воды. На поверхности эпидермиса листьев часто развиты полоски, чешуйки, которые также влияют на водный режим листа. 1ак как сильно снижают скорость движения воздуха над его поверхностью и рассеивают свет, что снижает потери воды (а счет транспирации.
Транспирация слагается из двух процессов: а) передвижения воды из листовых жилок в поверхностные слои стенок клеток мезофилла; б) испарения воды из клеточных с гонок в межклетные пространства и под устьичные полости с последующей диффузией в окружающую атмосферу через устьица или испарения воды из клеточных стенок эпидермиса в атмосферу путем кутикулярной транспирации.
Жидкая вода транспортируется к испаряющим поверхностям преимущественно по клеточным стенкам. Как и в корне это обусловлено тем, что в клеточных стенках вода встречает более слабое сопротивление, чем на пути от клетки к клетке через протопласты и вакуоли. В межклетниках воздух насыщен водой наполовину, а водный потенциал уравновешен с водным потенциалом окружающих клеток, где он редко бывает ниже 2 МПа. Водный потенциал атмосферного воздуха тем ниже (более отрицателен), чем меньше его относительная влажность. Молекулы воды покидают растение, перемещаясь (как и внутри растения) в направлении более низкого водногопотенциала, т. е. из тканей наружу через устьица.
Устьичная транспирация. Устьица играют важнейшую роль в газообмене между листом и атмосферой, это основной проводящий путь для водяного пара, ССЬ и О^. Устьица могут находиться на обеих сторонах листа, но есть виды, у которых устьица располагаются только на нижней стороне листа. Даже на одном растении у затененных листьев устьиц меньше, чем у постоянно хорошо освещаемых («световых») листьев, В среднем число устьиц колеблется от 50 до 500 на1 мм 2 . Транспирация с поверхности листа через устьица идет почти с такой же скоростью, как и с поверхности чистой воды. Это объясняется законом Стефана: через малые отверстия скорость диффузии газов пропорциональна не площади отверстия, а диаметру или длине окружности. Поэтому, хотя площадь устьичных отверстий и мала по отношению к площади всего листа (0,5 —2,0"()). испарение воды через многочисленные устьица идет очень интенсивно.
Кутикулярная транспирация. При открытых устьицах потери водяного пара через кутикулу листа обычно незначительны по сравнению с обшей транспирацией. Но если устьица закрыты, как. например, во время засухи, кутикулярная транспирация приобретает важное значение в водном режиме растений многих видов. Интенсивность кутикулярной транспирации сильно варьирует ч разных видов: от совершенно незначительных потерь до 50",, от общей транспирации. У молодых листьев с тонкой кутикулой кутикулярная транспирация составляет около половины всей транспирации. В стареющих листьях кутикулярное испарение воды может вновь возрастать из-за разрушения и растрескивания кутикулы. Кутикулярная транспирация регулируется главным образом толщиной слоя кутикулы. Виды магнолий и хвойных, обладающие толстыми слоями кутина в кутикуле, теряют очень мало воды через эпидермис листа. И наоборот, виды с тонких слоем кутина продолжают терять воду и после того, как устьица закроются, и поэтому гораздо сильнее страдаю от засухи. Некоторое количество воды выделяется в результате транспирации почек поскольку почечные чешуи полностью не предохраняют их от потери влаги. Репродуктивные органы также теряют воду и в некоторых случаях ни потери могут быть очень значительными: например, корзинки и подсолнечника коробочки мака и плоды перца транспирируют сильнее, чем листья данных растений в тех же условиях. Кроме того, вода испаряется с поверхности ветвей и стволов древесных растений через чечевички и окружающие их слои пробки. Хотя общее количество воды, испаряемой через чечевички, значительно меньше того, которое теряется через листья, фактически интенсивность транспирации на единицу испаряющей поверхности нередко мало различается в обоих случаях. Вследствие транспирации ветвей в зимнее время часто возникает водный дефицит и растения иону в результате обезвоживания.
Регуляция устьичной транспирации. Открывание устьиц регулируется несколькими взаимодействующими механизмами. Движущей силой, вызывающей изменение ширины устьичной щели, является изменение тургора замыкающих (иногда и прилегающих к устьицам) клеток. По мере тою как замыкающая клетка устьица осмотически поглощает воду, более тонкая и пластичная часть, удаленная от щели. Поскольку более толстый и менее эластичный участок стенки, окаймляющий щель, растягивается слабее, замыкающие клетки принимают полукруглую форму, в результате чего устьица раскрываются. Факторы внешней и внутренней среды прямо и косвенно воздействуют на устьичный аппарат, вызывая в замыкающих клетках изменения, которые в свою очередь приводят к изменению тургора. Из внешних факторов на движения устьица больше всего влияют влажность воздуха и условия водоснабжения, свет и температура, а из внутренних — парциальное давление СО2 в системе межклетников, состояние гидратации растения, ионный баланс и фитогормоиы из которых нитокинин способствует открыванию устьиц, а абсцизовая кислота—закрыванию. На состояние устьиц влияют возраст листьев и фазы развития растения, а также суточные ритмы. Сильнейшее влияние на движения устьиц оказывает степень обеспеченности клетки водой. Различают гидропассивную и гилроактпвную устьичные реакции. Активными называют движения, зависящие от изменений в самих замыкающих клетках, пассивными — движения, определяемые изменениями в клетках, окружающих устьичные. Гидроактивное закрывание устьиц связано с сдавливающим действием соседних клеток эпидермиса (и хлоренхимы) в условиях их полного тургора (при высокой насыщенное и водой). Гидротическое открывание устьиц может произойти при ослаблении сдавливания в условиях слабого дефицита воды. Гидроактивпос закрывание устьиц произойдем как только превысит пси лощение воды корнями и снижение тургора в замыкающих клетках доспи не критического уровня. Этот уровень имеет разную величину в зависимое и вида растения, возраста листьев и степени приспособленности к окружающей среде. Реакция закрывания устьиц по мере развития водною дефицита в каких обусловлена увеличением концентрации абсцизовой кислоты в клетках листа. Абсцизовая кислота подавляет на плазмалемме замыкающих клеток, вследствие чего снижается их и устьица закрываются. Для усиления синтеза АБК достаточно снижения водного потенциала листа па 0.2 МПа, еще не выражается в видимом завядании, по приводит к закрыванию устьиц. При нанесении АБК на основание листа ус пища закрываются через 3 — 9 мин. В отличие от других клен устьиц содержат хлоропласты. На при хорошем водоснабжении ус1ыта открываются тем шире, чем причем фактором является синий свет. Фотосинтез в замыкающих клетках также участвует в регуляции устьичных движений. Усиление синтеза углеводов в замыкающих клетках увеличивает их сосущую силу и вызывает поглощение воды, способствуя чтим открыванию устьиц. Обратимые превращения крахмала в сахар существенны в изменении сосущей силы и тур ори и замыкающих клетках. Открывание устьиц в утренние часы регулируется главным образом светом. Как правило, после полудня по мере усиления напряженности водного дефицита устьица закрываются.
Состояние устьиц зависит и от СО:. Если концентрация СО2 в подустьичной полости падает ниже 0.03%, тургор замыкающих клеток увеличивается и устьица открываются. Частично с этим связано открывание устьиц с восходом солнца: усиление фотосинтеза снижает концентрацию СО2 в межклетниках. Закрывание устьиц можно вызвать повышением концентрации СО2 в воздухе. Это происходит в межклетниках листа ночью, когда в результате отсутствия фотосинтеза и продолжающегося дыхания уровень ССК в тканях повышается. Такого рода регуляция устьичных движений СО2 позволяет понять, почему устьица закрыты ночью и открываются с восходом солнца.
Решающее влияние концентрации СО2 на степень открытости устьиц обнаруживается у суккулентов, обладающих специфическим суточным ритмом обмена органических кислот. Эти растения открывают устьица ночью, когда парциальное давление СО: в межклетниках их листьев снижается вследствие интенсивного образования метала, а закрывают устьица, когда при декарбоксилировании метала днем высвобождается СО:. который накапливается в межклетниках перед дальнейшим использованием.
Таким образом, в регуляции функционирования устьиц взаимодействуют прямые и обратные связи. Одна из них предотвращает недостаток СО2, который может быть вызван фотосинтезом. Когда межклеточная концентрация СО2 снижается до уровня, недостаточного для фотосинтеза, это служит сил налом обратной связи и устьица открываются для обмена СО2 с внешней средой. Другой тип связи реагирует на содержание воды в листьях: при снижении содержания воды в тканях устьица закрываются. В результате деятельности других двух типов обратных связей обычно наблюдаются небольшие осцилляции поверхности устьиц.
Суточные колебания транспирации.
У деревьев, теневыносливых растений, многих злаков и т. д. с совершенной регуляцией устьичной транспирацией испарение воды достигает максимума до установления максимума дневной температуры. В полуденные часы транспирация падает и вновь может увеличиваться в предвечерние часы при снижении температуры воздуха. Такой ход транспирации приводит к незначительным суточным изменениям осмотического давления и содержания воды в листьях. У видов, способных переносить резкие изменения содержания воды в клетках в течение дня, наблюдается одновершинный суточный ход транспирации с максимумом в полуденные часы. В обоих случаях ночью транспирация минимальна. Колебания интенсивности транспирации отражают изменения степени открытия устьиц в течение суток. Закрывание устьиц в полдень может бы и, связано как с увеличением уровня ССК в листьях при повышении температуры воздуха (из-за усиления дыхания и фотодыхания), так и с возможным водным дефицитом, возникающим в тканях при высокой температуре, низкой влажности воздуха и особенно в ветреную погоду, Как вод кислоты и закрыванию устьиц. Снижение температуры воздуха во в троп половине дня соответствует обрыванию устьиц и усилению фотосинтеза.
Интенсивность транспирации обычно выражают и граммах испаренной воды за 1 ч на единицу площади или на I г сухой массы; продуктивность транспнрации — количеством граммов сухих веществ, образуемых при расходовании каждых 1000 г воды. Величиной, обратной продуктивности транспирации, является траиспирационный коэффициент, т.е. число граммов воды, израсходованной при накоплении 1г сухих веществ. Интенсивность транспирании у большинства растений составляет 15 — 250 1 м ч днем и 1—20 г м ч ночью. Продуктивность транспирапии у растении в умеренном климате колеблется от 1 до 8 г (в среднем 3 г) на 1000 г израсходованной воды, а транспирационный коэффициент — от 125 до 1000 (в среднем, около 300 I. 1". е. около 300 воды расходуется на накопление 1 сухих веществ).
Транспирация – это процесс испарения воды растением. Интенсивная транспирация способствует большему притоку СО2, лучшему углеродному питанию растений. Транспирация создает автоматичность водного тока: поступление воды в растение и ее испаряемость. Без транспирации растение не будет обеспечено водой, поскольку корневое давление подает незначительное ее кол-во. Транспирация способствует передвижению минеральных в-в в растении, которые поглощаются из почвы корнями. Благодаря транспирации снижается температура растений. Без нее растения перегревались бы и в них не могли бы происходить различные физиологические и биохимические процессы. Одной из важных характеристик процесса является интенсивность транспирации — количество воды, испаряемое растением с единицы листовой поверхности в единицу времени.
Кутикулярная транспирация. Снаружи эпидермис покрыт кутикулой, в состав которой входит кутин. У кутикулы есть уникальное свойство, обусловленное особенностями ее состава — изменять гидравлическую проводимость в зависимости от оводненности. При подсыхании наружных слоев стенок эпидермиса гидрофобные слои кутикулы плотнее придвигаются друг к другу, поэтому кутикулярное сопротивление может удвоиться. При низких температурах оно также возрастает. И, наоборот, при увеличении оводненности эпидермиса кутикула набухает за счет гидратации карбоксильных и оксигрупп, разрыхляется, кутикулярное сопротивление диффузии значительно снижается и транспирация возрастает. Таким образом, потеря воды через кутикулу регулируется оводненностью листа. По ночам, например, при более сильном набухании кутикулы кутикулярная фанспирация идет интенсивнее, чем днем. Смоченные листья могут поглощать воду через кутикулу. Кутикулярная транспирация обычно составляет около 10% от общей потери воды листом.
Устьица составляют не > 1% всей площади листа. На 1мм2 листовой поверхности их насчитывают от 50-500 и >. Каждое устьице можно представить в виде очень маленького сосудика. Поэтому неск. небольших в какой-либо перегородке будут пропускать пары воды быстрее, чем одно большое отверстие, равное им по диаметру, это связано с явлением повышенной краевой диффузии.. Основной факт, обуславливающий движение устьиц, является содрежание воды в листе. При достаточном ее кол-ве в растении устьица открыты. На свету они у большинства растений тоже открыты, а в темноте закрыты. Движение устьиц регулируется комплексом факторов (температурой, осмот. давлением, интенсивность освещения и качества света). Движение устьиц связано также с изменением вязкости протоплазмы замыкающих клеток. При открытых устьицах плазмолиз имеет выпуклую форму, а при закрытых-судорожную. Различные устьичные движения: фотоактивную реакцию, если устьица на свету открыты, а в темноте закрыты; гидроактивную реакцию, когда устьица закрыты при сильной потере воды листом; гидропассивную реакцию, если в дождливую погоду происходит при значительном увеличении объема эпидермиса клеток, сдавливающих устьичные клетки. Глубокий водный дефицит может вызвать подвядание листа, эпидермальные клетки при этом, уменьшаясь в размерах, растягивают замыкающие клетки, и устьица открываются. А сразу после дождя эпидермальные клетки настолько разбухают от воды, что сдавливают замыкающие клетки, и устьица закрываются.
Процесс устьичной транспирации можно разделить на 3 этапа. 1этап- переход воды из клеточной оболочки, где она находится в капельно-жидком состоянии, в межклетники (парообразное состояние). 2 этап — выход паров воды из межклетников или ч/з кутикулу, или главным образом, ч/з устьичные щели. Поскольку устьичная транспирация составляет 80-90% от всего испарения, то степень открытости устьиц является основным механизмом, регулирующим интенсивность транспирации. При открытых устьицах общая поверность устьичных щелей составляет всего 1-2% от площади листа. Сравнение испарения листа с испарением со свободной водной поверхности той же площади показало, что оно идет не в 100раз, а всего в 2р медленнее. Объяснение этому явлению было дано в исследованиях Броуна и Эскомба, которые установили, что испарение из ряда мелких отверстий идет быстрее, чем из одного крупного той же площади. Это связано с явлением краевой диффузии. При диффузии из отверстий, отстоящих друг от друга на некотором расстоянии, молекулы воды, расположенные по краям, рассеиваются быстрее. Таких краевых молекул значительно больше в ряде мелких отверстий по сравнению с одним крупным. Для малых отверстий интенсивность испарения пропорциональна их диаметру, а не площади(закон Стефана). Таким образом, изменение степени открытости устьиц является основным механизмом контроля транспирации. 3 этап транспирации — диффузия паров воды от поверхности листа в более далекие слои атмосферы. Этот этап регулируется лишь условиями внешней среды.